https://ogma.newcastle.edu.au/vital/access/ /manager/Index ${session.getAttribute("locale")} 5 Granzyme B deficiency exacerbates lung inflammation in mice after acute lung injury https://ogma.newcastle.edu.au/vital/access/ /manager/Repository/uon:14651 Sat 24 Mar 2018 08:20:46 AEDT ]]> The nucleotide-binding domain, leucine-rich repeat protein 3 inflammasome/IL-1 receptor I axis mediates innate, but not adaptive, immune responses after exposure to particulate matter under 10 µm https://ogma.newcastle.edu.au/vital/access/ /manager/Repository/uon:16915 10) activates the nucleotide-binding domain, leucine-rich repeat protein (NLRP) 3 inflammasome in human airway epithelial cells. Our objective was to determine the innate and adaptive immune responses mediated by the airway epithelium NLRP3 inflammasome in response to PM10 exposure. Using in vitro cultures of human airway epithelial cells and in vivo studies with wild-type and Nlrp3-/- mice, we investigated the downstream consequences of PM10-induced NLPR3 inflammasome activation on cytokine production, cellular inflammation, dendritic cell activation, and PM10-facilitated allergic sensitization. PM10 activates an NLRP3 inflammasome/IL-1 receptor I (IL-1RI) axis in airway epithelial cells, resulting in IL-1β, CC chemokine ligand-20, and granulocyte/macrophage colony–stimulating factor production, which is associated with dendritic cell activation and lung neutrophilia. Despite these profound innate immune responses in the airway epithelium, the NLRP3 inflammasome/IL-1RI axis is dispensable for PM10-facilitated allergic sensitization. We demonstrate the importance of the lung NLRP3 inflammasome in mediating PM10 exposure–associated innate, but not adaptive, immune responses. Our study highlights a mechanism by which PM10 exposure can contribute to the exacerbation of airway disease, but not PM10-facilitated allergic sensitization.]]> Sat 24 Mar 2018 07:58:45 AEDT ]]>